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Abstract

This paper is concerned with various problems involving the interplay of asymptotics
and numerics in the analysis of wave propagation in dissipative systems. A general ap-

proach to the asymptotic analysis of linear, dissipative waves is developed. We apply

it to the derivation of asymptotic boundary conditions for numerical solutions on un-

bounded domains. Applications include the Navier-Stokes equations. Multidimensional

traveling wave solutions to reaction-diffusion equations are also considered. We present

a preliminary numerical investigation of a thermo-diffusive model of flame propagation
in a channel with heat loss at the walls.

1 Introduction

The mathematical theory of wave propagation in dissipative systems is rich both in appli-

cations aa_d challenges. Two important classes of problems are those involving convection

dominated but viscous fluid flows and those involving traveling wave solutions of nonlinear

equations of parabolic or incompletely parabolic type. (The two classes overlap, of course,

in the study of viscous shock profiles.) In this paper we shall discuss a variety of problems

involving the asymptotic and numerical analysis of dissipative waves with an emphasis on

the connection between the two.

The construction of numerical radiation boundary conditions at artificial boundaries

is an issue of great importance in many branches of fluid mechanics including acoustics,

aerodynamics, meteorology and oceanography. It is also a prime example of an area where

asymptotic analysis can contribute to the design of numerical methods. Our approach

is to study the far-field asymptotics of propagating waves and use it to design accurate

boundary operators. In Section 2 we develop a general asymptotic analysis of the long range

propagation of waves in linear, dissipative systems. This is based on the identification of

dominant wave groups associated with minimal decay rates. Ill Section 3 we show how to

use these to construct asymptotic boundary conditions and also give some consideration to
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the small dissipation limit. An early version of these ideas was applied to an advection-

diffusion equation in [11]. Error estimates are given in [13] while their application to the

incompressible Navier-Stokes equations is discussed in [12].

Traveling wave solutions to reaction-diffusion equations in one space dimension have
been extensively studied. In Section 4 we consider a natural multidimensional generalization

of these: traveling wave solutions in cylindrical domains. Far less is known about such

solutions. It is particularly difficult to generalize the existence theory as it typically makes

use of a phase space analysis. We consider the numerical computation of such waves. As

an example we take a thermo-diffusive model of flame propagation in a channel with heat

loss at the walls. Some preliminary numerical results are presented. All the work in this

section has been carried out jointly with Steve Buonincontri of Lawrence Livermore National
Laboratories.

2 Asymptotic Expansions for Dissipative Waves

We consider the following system of partially separable second order differential equations

in an n-dimensional cylindrical spatial domain, (z, y) E [0, oo) × fi:

/_2f 0U AOqU n-1 0U n-1m+Cu= D _ 0 Ou
Ot + Ox + _ B3 oyj -_yiDij oy---_." (1)

j=l i,j=O

(Here we identify x with Y0.) These are supplemented by boundary and initial conditions

defining a signalling problem:

,,(x, Y, O) = O, (2)

Eou(O, v, t) = g(v, t), (3)

Ou

T0_-_n + Tlu = 0, y • 0_, (4)

where o denotes the conormal derivative. For now we simply assume that the m x m

matrices M, A, Bj, C, Dij, Eo and T, are functions only of the cross-sectional coordinate y

and that (1-4) is well-posed. A formal representation of the solution may be obtained using

Laplace transformations in z and t. This leads to the eigenvalue problem in fi:

n-1 0 OY n-1 0'0

-7:) _ -_yiDij-_yj + _j-_ PJ oy----_+ Qv = O, (5)
i,j=l j=l

n-10Djo.

Q = sM + AA + C - D()_2Doo + A __, --_yj ), (6)
j=l

Pj = Bj - )_D(Doj + Djo). (7)

An oxpression for u then is:

v, t) = Z ut(x, v, t), (s)
tEA"

i'ut(z, y, t) = cL(p)qt(x, y, t - p)dp, (9)

WhelO

(llcr_ l • _r if '}?(At) < O,

-- ('*+'_*(_)_'vt(y; ._)ds.
qt(x,_/,t) = 2_i : (lo)



2.1 Asymptotic Analysis

We now use the method of steepest descent to compute asymptotic expansions of qt, valid

for x large. Evaluating (10) along rays t = 3'x , x >> 1, we seek points s* such that:

AI(s*) = -3', (11)

_(3,) > 0, (12)

3(3')=0. (13)

Assuming that for 0 _< 7,,_in _< "7 -< ")'max --<OOa solution to (11) exists we have:

q_(x,v,0 e4s'(*_)(_)+_'("(_))) vt(y;_'(_))"_ = el(x, y, t), (14)

t
3'm,n < - _< _mo_. (15)

x

Substituting these into (9) formally yields an appro:dmation of u_ for t > 77mi,_x;

t--"YminX_(_, v, t) ~ J,,=(0.,-,mo._)c_(p)¢t(_,v, t - p)dp. (16)

In (16) ut is represented as a superposition of wave groups propagating at their group

velocity. Further simplifications may be obtained by noting that, for problems with dissi-

pation, each wave group decays exponentially with the rate:

- _(3,s* + At(s')) # O. (17)

For general signal data we expect that the large x behavior will be dominated by the

wave group with least decay, so we seek to minimize the decay rate as a function of 3'.

Differentiating with respect to "7 yields:

_('* + d_ + _)) = o, (_s)

which by (11) reduces to:

_(*'(3,)) = O. (19)

Assuming (11) defines a curve in s space, we have shown that critical points of the decay

rate occur as the curve crosses the imaginary axis. This may occur for s* = 0 or for complex

conjugate pairs 8" = +_i. In the spirit of Laplace's method a crossing at 3' = "Ylwill lead to

a contribution to the asymptotic approximation of u, computed by replacing Ct in (16) by:

- P p)_(_), (2o)_0_r(x + ;--}-,t -

s" - k _ + (_._2

V(z,r) = e "" 'q_ 1

l[ere we have:

,X_ = #is" + ,Xt(._'), (22)



dAt ( ,
_ = -_7,s ,=-#_, (23)

1 d2Al
- 2 (*% (24)

where s* is evaJuated at 7t- For s* = 0 this is indeed Laplace's method, and the approxi-
mation will give the leading order asymptotics. For imaginary s" this is not true pointwise

due to the oscillatory nature of tt. The results of [13] imply, however, that it provides an

asymptotic approximation in an appropriate norm.

2.2 Sufficient Conditions for s'(-}_) = 0

Although our analysis allows for s" _ 0, we are then faced with the potentially difficult

problem of locating the points on the imaginary s-axis where the group velocity is real.

Numerical methods for this are outlined in [13] and have been carried out for the linearized

Navier-Stokes equations. They are, however, expensive and cannot be guaranteed to locate

all critical points. It is, therefore, of interest to identify a priori problems for which s" = 0

is a solution of (11-13). We find that sufficient conditions can be given if we make the

following partial symmetrizability assumption.

Assumption 1 There exists a smooth matrix S(y) with smooth inverse such that _ = Su

satis]ies:

ot + ox + de = vv. bye, (25)

where the matrices 2VI, A, C and D are symmetric and:

D>O, _i>_O, Doj=O, j=l,...n-1. (26)

Furthermore, the boundary conditions on O_ either take the .form:

On + _ = 0, (27)

or

&i
o--;+ = o, (28)

with T symmetric and positive semidefinite.

We note that Assumption 1 wiLl hold for a number of interesting physical problems in-

cluding some advection-diffusion equations as well as linearized advection-reaction-diffusion

equations with parallel base flows. It does not, however, hold for the Navier-Stokes equa-

tions linearized about a parallel flow. In fact s* _ 0 may be important in our asymptotic

analysis of linearized viscous flow both for very low and very high Reynolds numbers [12].

We now turn to the analysis of (5). In what follows we'll drop the tildes and assume

that (1- 4) has been given in the partially symmetrized form above. If we can show that

AI(a ) is real for real s in an intervM containing zero, than we will have shown that the reaJ

s-,xis is locally a curve of real group velocities. Note that the eigenvalue problem is not

sell-adjoint due to the dependence of Q on A. Nonetheless, by a simple adaptation of an

argument due to Berestycki and Nirenberg [3], we are able to prove:



Theorem 1 Suppose Assumption 1 holds and, if the boundary condition is given by (28),

the matrix foil T + fn C is positive definite. Then there exists b < 0 such that solutions,

A(s), of (5) a,_ ,_ai ,ohen s is ,_al and s > 6.

Proofi Follvwing [3] we write A = # + iu and by an integration by parts obtain:

B(v,A) + s _ vHMv = A_(v,#), (29)

OvH _ Ov )

jC(v,#) = _ vn(2pDDoo - A)v.

vHTv }+ [Jo or , (30)
f_ Ovn TOv

(3_)

As G and/3 are real, if s is real A can have a nonzero imaginary part only if both sides of

(29) are zero. The hypothesis of the theorem, moreover, implies the existence of 6 < 0 such

that for s > _ the left-hasld side is positive, guaranteeing that A is real and of the same sign

aS G.

Equation (29) can further be used to establish a connection between the sign of )q(0)

and both its large s behavior and the direction of propagation of the corresponding wave

group:

Theorem 2 Suppose the conditions of Theorem i hold and M > O. Then 1 E .hf and

A_(O) < 0 if and only if Az(O) < O.

Proof: Consider any nonsingular solution branch Al(s) as s varies along the nonnegative

real axis. As the left-hand side of (29) is strictly positive, the right-hand side can never be

zero, so At must be of one sign. Moreover, if At < 0 then G < 0. Differentiating (5) with

respect to s, multiplying by v T and integrating we obtain a general formula for Art:

_ vT"M v = /kl /fl vr (2AID D°° - A )v. (32)

For At _ld v real the factor multiplying A_tis simply G so that the sign of A_ is the same as

that of G and, hence, that of ),t.

Note that the conditions be relaxed to allow At(0) = 0 so long as G(v(y; 0), 0) ¢ 0. Then

the sign of _ determines the sign of )q and At. It should also be noted that these theorems,

though establishing the contribution of the neighborhood of s = 0 to the asymptotics, do

not rule out the existence of imaginary s contributions. That is, we have been unable to

prove that real group velocities cannot occur for imaginary s even with the assumptions
made above.

3 Construction of Asymptotic Boundary Conditions

Now supt)ose we are interested in the numerical solution of (1-4), or, more generally, of a

problem for which these equations represent a far-field approximation. In order to restrict

lhc computaMonal (lomail_ to a finit(; region, an artificial boundary is tyl)icall.v introduced.



sayat x = r. In order to close the system, additional boundary conditions must be imposed.

That is, we approximate u by uf which satisfies (1-4) for (x, y) E [0, r] x ft as well as:

Bu](r,y,t) = O. (33)

Ill the past fifteen years an extensive literature has developed discussing the problem of

choosing the operator B, though mainly in the difficult case of hyperbolic problems. There

are three basic criteria which it should ideally satisfy:

1. The finite domain problem is well-posed.

2. Bu is small in an appropriate norm.

3. The efficient numerical solution of the finite domain problem is possible.

The first two criteria are the specialization of the usual notions of stability and consistency

to the problem of numerical boundary conditions, and can be used to derive error estimates

[13]. Techniques for establishing the first criterion are well-known [7], [17], but the second

is far more difficult to satisfy. In particular, exact conditions, i.e. those for which Bu = 0

whenever u solves (1) and (4), are invariably nonlocal in both space and time and, hence,

violate the third criterion. Asymptotic analysis can provide a means for constructing local,

or at least local in time, operators which still satisfy the 'consistency' criterion.

The Laplace transforms of _. and qt are related by:

-87 v; = y; s). (34)

If the assumptions of the previous section axe satisfied, the asymptotic analysis involves the

restriction of the transforms to a neighborhood of s = 0. An asymptotic expansion of the

x derivative may then be obtained by replacing Al(s) by its Taylor series about 0:

At(o) + + .... (35)

This leads to tile local relationship:

Oq'-'LI" (At(O) + A't(O)O) qt'Ox (36)

These may be substituted into (9) to finally obtain a condition on ut. The time derivative is

brought outside the integral to further simplify the expression. This involves the neglect of

terms from the limits of integration which should be exponentially small. The asymptotic

boundary condition we propose is, then, given by:

'Ou---2t= (At(O) + A'(o) O) ut'Ox (37)

The construction of/3 now hinges on the number of modes, ul, which are importanl in

the asymptotic development ofu. In the simplest case there is asingle mode, say l = 1,

satisfying:

e =\_(°) >> c_'_(°), 1 ¢ 1. (3S)

Thel, we may take:
0 0

- A,(o)-



In [13] it is shown that this procedure leads to an error estimate of the form:

Ilu- uslt_<Ke 'C°lllull, (40)
T

where K is a constant. In the most interesting cases AI(0) is small so that the ! decay,
T

which is a direct result of the use of asymptotic conditions, is important.

More generally we may assume that At(0) < Az+1(0) and, for some J:

e_"_J(O) _ evA J÷ 1(0) (41)

If J is small, for example 2 or 3, a Jth order operator B may be constructed as the product
of first order conditions:

(0
I=1

(42)

For J larger, a nonlocal in space condition is likely to be more useful. Let /Ci, i = 1,... ,J

be linear functionaJs on the appropriate space of functions on _ with the property:

Kivl(.;0)=_fil, i,l = 1,...,J. (43)

The existence of such functionals is guaranteed by the linear independence of tile eigenfunc-

tions vl(y; 0). An asymptotic boundary operator is then given by:

where

0 0
B = A0 - AI-a-:, (44)

0a:

J

A0- = fie;u)v (y;0), (4.s)
i=1

J

i=1

Product conditions with J = 2 have been used in [11] and [12], but the nonlocal condition

(44) is as yet untried.

3.1 Behavior for 7) Small

The study of waves in dissipative systems with small dissipation, in our case for small /),

is of particular interest. For the problem of boundary conditions it provides a potential

link between our results and the hyperbolic theory. In a recent paper Halpern [15] has

studied this question for incompletely parabolic perturbations of linear hyperbolic systems
with constant coefficients. The conditions derived there involve viscous corrections to the

hyperbolic conditions of Engquist and Majda [8].

Relaxing the the assumptions of the previous section to allow _(0) = 0, we seek solutions

of (5) with bounded decay rates. Thus the term proporliona.1 to T)_\"2 can be ignored to

leading order. We distinguish between two separate cases:

(:ase 1: There are no smooth functions v(y) satisfying (,1)and Cv = {}.
Case 2: C =0.

(We are ex(:luding the more com t)licated case of C ¢ O but violating the case 1 assumption.)



Undercase1wemustconsidersolutionsof thesingularperturbationproblem:

,,-1 O_ Ov

- v + cv =- Av (47)
i,j= l

This is rather difficult to analyze, and we won't discuss it further. Note, however, that we

expect the decay rates to be bounded away from zero independent of 79.

Under case 2, on the other hand, we find many eigenvalues which approach 0 with D.

Introducing the scaling A = 79A we consider the nonsingular reduced problem:

_ 0._2_. Ov AA v.
- -- uyiDiaOyj -- (48)

i,j=l

All eigenvalues of the reduced problem which are negative are of importance in the asymp-

totic boundary conditions for 79 sufficiently small, as their decay rates are approaching

zero. This suggests the use of the nonlocal conditions of the preceding section. If A > O,

which we may associate with all characteristics pointing out of the computational domain,

all eigenvalues are negative and the reduced equation itself may be used as a boundary
condition:

M OU 4 0u _ 0__0_ Ou
-_ +" Ox = 79 z--' Oy iDij • (49)

i,j=l Oyj

If A < O, corresponding to all characteristics pointing in, then there are no negative eigen-

values bounded independent of D. Dirichlet conditions may then be imposed on u. The

most interesting case occurs when A has eigenvalues of both sign. Then the boundary con-

dition will involve a coupling between incoming and outgoing characteristics of the related
hyperbolic probleln.

It should be noted that we do not expect the error estimates to be uniformly valid as

l;} approaches 0. For hyperbolic problems curves of real group velocity will coincide with

the imaginary s axis, which indicates nonuniformity in the steepest descent calculations.

That is, we cannot expect only the low frequencies to be present for moderate r. It would

be of interest in this regard to extend our method to viscous perturbations of the wave

equation and study its connections with the recent work of Engquist and Halpern [9]. They

consider low frequency corrections to the Engquist-Ma.jda conditions and study the long
time behavior of the error.

3.2 Applications to the Navier-Stokes Equations

The Navier-Stokes equations provide a most important example of a dissipative system

with propagating solutions and were the prime motivation for the work described here. The

detailed application of our technique to the derivation of asymptotic boundary conditions

for the incompressible equations linearized about plane parallel flow is described in [12].

The eigenvalue problem (5) is then given by the well-known Orr-Sommerfeld equation of

hydrodynamic stability. As the equations do not satisfy Assumption 1, the results guar-

anteeing s* -: 0 cannot be applied. Nonetheless, for large Reynolds number, we find that

an analogue t{_ (48) can I}e constructed which does lead to slowly decaying proi}agating
ln{,{l{'s near s ° = {}. A bol,ndarv condition based on two of these modes was utilized in lhe

simulation of vortical disturbances to Poiseuitle flow and was quite successful for l({,yllolds

nllmt}ersin th,. hundreds. Forltigher Reynolds numbers a condition such as(49) islikely to



beeffective.Forflowswith a critical Reynoldsnumber,however,solutionswith imaginary
s* will eventuallybecomedominant.Our analysissuggeststhat thenonlocalcondition(44)
based on solutions of the full Orr-Sommerfeld equation may then be useful, but they have

not yet been tried.

Presently under consideration are applications to compressible flows and to nonisother-

mal incompressible flows. Also of note are the detailed studies by Halpern and coworkers

[16], [15] of boundary conditions for both the compressible and incompressible Navier-Stokes
equations linearized about a uniform flow.

4 Traveling Wave Solutions in Cylindrical Domains

Among the most active areas in the study of wave propagation in dissipative systems has

been the analysis of planar traveling wave solutions to reaction-diffusion equations. Appli-

cations have been made to models of flame propagation, nerve conduction and the internal

structure of shocks in viscous conservation laws to name a few. Simple examples include

Fisher's equation, which is the diffusion equation plus the nonlinearity F = u(1 - u), where

a continuum of waves is found connecting a linearly stable and linearly unstable homoge-

neous state, and the bistable equation, F = u(u - a)(1 - u), where a unique wave connects
two stable states.

A natural, nontrivial generalization of these solutions to higher space dimensions comes

from the consideration of waves propagating in cylindrical domains. In general we consider:

Ou _ 0_ Ou
-n:,D,jn=.+r(u,w,v), (x,y) e xOt-

i,j=O _yt _y 3

Here agMn we identify Y0 with x and suppose that neither Dij nor F depend explicitly

on x. Boundary conditions (4) are also imposed. We further suppose that (at least) two

solutions independent of x and t, u+(y) exist. A traveling wave solution of (50) takes the

form u = w(x - ct, y) with:

y)=
It satisfies the elliptic equation:

0_ c_w Ow
D'J-g- YJ+ + F(w,W,V)= 0.

Only a few studies of solutions to (52) have appeared in the literature. Berestycki and

Nirenberg [3], [2] have established monotonicity results for general scalar problems. Gardner

[10] proves the existence of a nonplanar wave for the bistable equation in a channel. In joint

work with Buonincontri [5], we have numerically computed traveling wave solutions to the

Frank-Kamenetski equations in a channel and also developed some stability results. As the

waves connect stable and unstable states, this may be thought of as a multidimensional

problem of Fisher type.
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4.1 A Model of Flame Propagation in a Channel with Cold Walls

Considerthe followingsystemof reaction-diffusionequationsmodelingcombustionin the
channel(x,y)e (-_,oo) × [0,1]:

OT -0

p-_ - V2T = I)pYe"_', (53)

COY -0

p--_ - £-IV2Y = -7)pYe'-_, (54)

pT = k, constant, (55)

OT OY

On - a(T- To), cOn -0' at y=0,1. (56)

Itere T is the temperature, Y is the mass fraction of the reactant, _ is the Lewis number and

is the activation energy. The model has heat loss at the channel walls, which precludes

the existence of planar traveling wave solutions.

This thermo-diffusive model ignores convection by the fluid flow induced by thermal

expansion. Most authors, in using such a model, take p constant rather than proportional

to T -1 . In order to define the traveling wave we must find unburnt and burnt limiting states

at +co. The burnt state solution has no reactant present and is at the ambient temperature:

Y = O, T = To. (57)

Note that in the study of plane flames the burnt boundary is hot, T > To. The structure of

the flame we compute will be much different, exhibiting a nonmonotonic temperature profile

rising to a maximum in the reaction zone then slowly decaying due to the heat loss. There

is no unburnt equilibrium due to the form we've chosen for the reaction term. However,

supposing the dimensionless ratio of ambient temperature to activation energy to be small,

e = _ (:< 1, we can compute a slowly varying unburnt state:

Y = Yo(et) + eYl(et, y) + O(e2), T = To + eTl(et, y) + O(e2). (58)

Among the questions one would like to answer about the propagating flames are:

1. For what values of the parameters do traveling waves exist? Is there extinction for suf-

ficiently large heat loss? (Evidence for extinction will be nonexistence of propagating

solutions.)

2. How does the shape and speed of the waves vary with the parameters and compare

with planar results?

A detailed discussion of the derivation of the model equations can be found in the doctoral

dissertation of Buonincontri [4]. In a recent paper, Benkhaldoun, Larrouturou and Denet [1]

pr(,_ent a numerical study of essentiMly the same problem using a slightly different thermo-

diffusive system. Ra_ther than directly solving the equations defining the traveling wave,

th,,y solve an irfitial-boun(lary value problem.

10



4.2 Numerical Methods and Preliminary Results

In this sectionweshall describeour numerical methods for computing the traveling wave,

which are of general interest, and also present some preliminary results. All the compu-

tations are due to Buonincontri. A more detailed and definitive study will be published

elsewhere when complete.

The fundamental numerical difficulty is the proper imposition of boundary conditions

at artificial boundaries, z = z±, introduced to limit the computational domain, and the

determination of the unknown wave speed c. We are guided by the general theory of

a_ymptotic boundary conditions for nonlinear elliptic boundary value problems given in

[14]. For ordinary differential equations the numerical problem has also been considered by

Doedel and Friedman [6]. They obtain impressive theoretical results, but the application of

their technique to partial differential equations would be too expensive.

An asymptotic analysis of the traveling wave as z --+ 4-o0 yields:

Y - Yo - _YI "_ 7+e w+(y) , z _ o0,

T To ,.. 7_e _-_ z--, -o0.
Y w_(y) '

The exponential decay rates, 4-A, and corresponding eigenfunctions are defined by the

eigenvalue problem (5) for the equations linearized about the asymptotic states. It should

be noted that they depend on the unknown wave speed c. From these expansions we derive

the asymptotic boundary conditions:

Y-Yo-cY = o ' (61)

) -- 0

The traveling wave problem (52) clearly cannot possess unique solutions due to the trans-

lation invariance of the wave. To get uniqueness, we must impose an additional phase

condition which we do by fixing 7+:

1{v+(T - (To + _T1)) + w+(Y - (ro + _Yl)))dy = (63)k.

This additional equation balances the additional unknown, c. In [5], where a stable-unstable

connection is computed, the use of the theory of [14] leads to one less boundary condition

at z+ corresponding to the fact that waves exist for a range of speeds.

We approximate (52) using centered finite differences and solve for the wave and c

simultaneously using Newton's method. Note that the et dependence of the wave only

comes in, at leading order, through the boundary condition. In Figure 4.2 we plot a typical

profile. At present we have only investigated a small part of parameter space with L: > 1.

We have found a variety of interesting phenomena including extinction for c_ large enough

as well as an apparent limit point as L: is v_ried.
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